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Abstract

We propose TripNet a method for calculating similarities be-
tween striated toolmarks. The objective for this system is to
distinguish the individual characteristics of tools while being
invariant to class and sub-class characteristics, and varying pa-
rameters like angle of attack. Instead of designing a hand-
crafted feature extractor customized for this task we propose
the use of a Convolutional Neural Network (CNN). With the
proposed system 1D profiles extracted from images of stri-
ated toolmarks are mapped into an embedding. The system is
trained by minimizing a triplet loss function so that a similarity
measure is defined by the Lo distance in this embedding. The
performance is evaluated on the NFI Toolmark database con-
taining 300 striated toolmarks of screwdrivers published by the
National Forensic Institute of the Netherlands. The proposed
system is able to adapt to a large range of angles of attack be-
tween 15°and 75°, achieving a Mean Average Precision (MAP)
of 0.95 for toolmark comparisons with differences in angle of
attack of 15°to 45°; for differences of 15°to 60°a MAP of 0.78
is achieved.

1 Introduction

Since the validity of comparative forensic examination of tool-
marks has been challenged in court, papers have been pub-
lished with focus on obtaining statistical support for the notion
of the uniqueness of toolmark patterns [1], i.e. the existence
of “measurable feature with high degree of individuality” [2].
Even though the requirement for such uniqueness is debat-
able [3], this led to a variety of methodologies [2,4, 5, 6,7, 8, 9]
for automatically, and objectively [4], comparing striated tool-
marks.

The input for these algorithms are 1D profiles extracted
from either 2D images or 3D surface scans of the striated tool-
marks. In Figure 1 two images with superimposed profiles
from the same tool at different angles of attack are depicted.
After preprocessing, similarity scores are commonly computed
using the Cross-Correlation (CC) as proposed by the National
Institute of Standards and Technology (NIST) for comparing
ballistic toolmarks [10, 11]. This approach is either applied
globally on the whole profile [4, 5, 6] or locally [8]. Another

similarity measure based on locally normalized squared dis-
tances, the so-called relative distance, is propose by Bachrach
et al. [2]. These similarity measures are then used to predict if a
given pair of toolmarks are matches or non-matches, i.e. made
from the same tool or not, respectively.

In contrast to computing a similarity measure, Pe-
traco et al. [9] propose a classification approach based on ma-
chine learning. In a first step, Principle Component Analysis
(PCA) and Linear discriminant analysis (LDA) are used for di-
mensionality reduction of the input profiles. The identity of
the tool, i.e. the class, is then predicted using Support Vector
Machines (SVM).

The common challenge for comparing striated toolmarks
lies in distinguishing individual characteristics of the tool while
being invariant to class and sub-class characteristics [4]. Fur-
ther, parameters like angle of attack (from now on referred to
as «v), substrate material and axial rotation have a major impact
on toolmarks [5]. Baiker et al. [4] showed that when comparing
toolmarks with different «, for differences of 30°the error rate
is more than a magnitude higher than for differences of 15°, i.e.
the false discovery rate increases from 3.00% to 36.67%.

We propose the use of Convolutional Neural Networks
(CNN) [12]. Instead of designing a handcrafted feature extrac-
tor which on the one hand is sensitive enough to distinguish the
fine grained individual characteristics and on the other hand is
robust enough to be invariant to changes in the aforementioned
parameters, it is trained from end to end. Recent advances in
deep learning have shown that CNNs outperform the state-of-
the-art of handcrafted feature descriptors [13]. For compar-
ing images Chopra et al. [14] propose a siamese architecture
where two identical networks with shared weights are used to
learn a low dimensional representation of images. In this fea-
ture space (embedding) similarities between face images are
computed using the L1 norm. Further, a similar architecture is
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Figure 1: Superimposed 1D profiles extracted from 3D surface

scans onto 2D images of NFI Toolmarks; (top) 15 degree, (bot-
tom) 30 degree.
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applied by Zagoruzkoa and Komadaski [15] for matching local
image patches. Schroff et. al [16] propose the use of a triplet
loss function minimizing the distance between an anchor and
a positive (match) while maximizing the distance between the
anchor an a negative sample (non-match). Similar architec-
tures are likewise used to distinguish faces [17] and local image
patches [18].

In this paper we propose the use of a CNN called " Trip-
Net” for matching toolmarks profiles extracted from 2D im-
ages. To allow a fast computation of similarities the triplet loss
function described by Balntas et al. [18] is applied. This way,
instead of computing the distances between all possible tool-
mark pairs using the CNN (NxN comparisons) each toolmark
is mapped into the embedding where the Lo distance corre-
sponds to a similarity score. Our evaluation is based on the
NFI database of 300 striated screwdriver toolmarks published
by Baiker el al. [4].

This paper is divided into the following sections: Firstly
in Section 2, a curvature matching method is proposed as our
baseline approach. Secondly in Section 3, the loss function, the
network architecture and the design decisions behind are de-
scribed. Thirdly in Section 4, our baseline is evaluated against
the results by Baiker et al. [4] and the performance improve-
ments of TripNet are shown. We conclude with the advan-
tages and disadvantages of our approach and future work is
discussed.

2 Baseline

Our baseline approach is based on the elastic shape metric pro-
posed by Srivastava et al. [19]. For comparing shapes of closed
and open curves in R” the distance is defined as a combination
of bending and stretching deformations. In contrast to other
elastic shape metrics, the curve is represented by the square-
root-velocity (SRV) function to reduce it to an L? metric. All
curves are scaled to unit length in order to achieve scale in-
variance. These open curves with unit lengths are then repre-
sented by points on a unit hypersphere in this pre-shape-space
L?(D,R™). The distance between two curves is then defined
by the length of the minimizing geodesic between their point
representations in pre-shape-space. Since this pre-shape-space
is not invariant to rotation and re-parameterization an addi-
tional optimization step is performed afterwards to compute the
distances in shape-space.

This approach is directly applied to the NFI Toolmark pro-
files. The only preprocessing step performed is downsampling
to 800 points which corresponds to the minimal wavelength
used by Baiker et al. [4]. In Figure 2 the result of this approach
is visualized on an example using the same profiles as depicted
in Figure 1. The corresponding points are shown as connec-
tions between the curves.

3 TripNet

Our proposed neural network TripNet is based on the work of
Balntas et al. [18]. The architecture is depicted in Figure 3.
Similar to siamese networks [14], there are multiple branches
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Figure 2: Result of applying the elastic shape matching op-
eration to the profiles of tool 1A for o of 15°(bottom) and
30°(top).

with shared weights. The training is performed by forward-
ing three input samples (a triplet T' = {x,,,, z;,, x5 }) through
these branches, i.e. they are mapped into the embedding f(z;).
Two samples are chosen from one class and another one from
a different class, i.e. x,,, Zp, and x,, respectively. The results
are then combined in the loss function and the error is back-
propagated.

The dimension of this embedding f(z) can be controlled by
changing the size of the last layer in the branches. Since, the
weights are shared only one branch is needed after the training.
As the loss function minimizes the euclidean distance between
matching samples, the L? norm can be used to measure dis-
tances in the embedding. Therefore, efficient algorithms for
calculating Lo distances can be applied [18]. Additionally, the
storage requirements are directly controlled by changing the
dimension of the embedding.

loss function

Figure 3: Triplet architecture

3.1 Triplet Loss

In contrast to other triplet loss functions like the SoftMax Ratio
proposed by Hoffer et al. [20] which only takes one negative
distance into account, all three distances between the samples
are used in [18]:

AT =|f(zp,) = f @)l
AT =f(zp) = f(an)lly (1)
Ay =1f(zp,) = flan)lly

with the triplet T' = {x,,,%;,,z,} and the embedding
f(z). Instead of forcing the distance A™ to be just smaller
than A7, it is forced to be smaller than A* = min(A], Ay).
The difference is illustrated in Figure 4.

The loss is then defined as [18]
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Figure 4: SoftMax Ratio (a) compared to SoftPN (b) [18].

which is implemented using a Softmax layer and the Mean
Square Criterion. The selection of training samples is simpli-
fied by this approach since soft negative mining is performed
implicitly [18].

3.2 CNN Architecture

The architecture of the CNN is depicted in Table 1. As our
input images are 1x800 the convolutional and pooling layers
have one dimensional input regions.

Each convolutional layer is followed by batch normaliza-
tion to decrease the dependency on input normalization and
initialization of the network [21]. The size of the convolu-
tions and the number of feature maps as well as the size of the
pooling layers were empirically evaluated. The best results are
achieved with 1x5 convolutions and 1x3 pooling with 64 fea-
ture maps in the first convolution and 32 in the second. In con-
trast to [18] Rectified Linear Units (ReLU) [22] and average
pooling [12] are used since this setup performs better. How-
ever, for the last layer a smooth output is ensured by a Tanh
activation function. To additionally fight overfitting due to our
small dataset a Dropout [23] layer is added at the end with a
probability of 0.5.

Layer # Description
1 SpatialConvolution(1,5) — 64

2 SpatialBatchNormalization

3 ReLU

4 AveragePooling(1,3)

5 SpatialConvolution(1,5) — 32
6 SpatialBatchNormalization

7 ReLU

8 AveragePooling(1,3)

9 Dropout

10 Linear — nfeat

11 Tanh

Table 1: Architecture of the CNN branches.

3.3 Implementation Details

The training and evaluation of TripNet is implemented in
Torch'. Similarly to the processed 1D profiles used for the
baseline the 2D images are downscaled to a height of 800
pixels. For training random vertical 1x800 crops are taken

"https://github.com/torch/torch7

to increase the variability of the samples. The triplet cre-
ation is done on-line, i.e. not created beforehand but dur-
ing training. Triplets with positive samples extracted from the
same image are discarded to remove trivial samples. Min/max-
normalization and mean pixel subtraction is performed as a pre-
processing step. For evaluation only center crops are used for
reproducibility. Similarity scores are computed by computing
the Lo distance between toolmarks of the testset and the train-
ingset in the embedding.

The optimization is done using Stochastic Gradient Decent
with a learning rate of 0.01, weight decay of 10~ and momen-
tum of 0.9.

4 Evaluation

In contrast to other works on toolmarks [4, 2] this paper ap-
proaches the evaluation in terms of Information Retrieval (IR).
In IR a user expresses an information need using a set of
queries and retrieves relevant and nonrelevant documents out
of a document collection [24]. In case of toolmarks the infor-
mation need can be expressed as the search for a similar tool-
mark, i.e. the search for a toolmark made by the same tool.
This way relevant and nonrelevant documents are represented
by toolmarks made by the same or another tool, respectively.

4.1 Performance Metrics

For evaluating the performance of our methodology different
metrics are used. Firstly, considering the scenario of a forensic
expert searching for a linked case. It might be cumbersome to
look through hundreds of toolmark images but just searching
for n may be feasible. This is captured in a top-n soft criteria
which is defined as follows:

> query Match found in top-n results

3)

top-n = -
P number of queries

This means, the score is one if and only if a matching tool-
mark is found in the first top-n results. Even though this score
is very intuitive it has two disadvantages. Firstly, multiple top-
n scores have to be combined for an assessment of the perfor-
mance. Secondly, it does not take into account how many of the
relevant toolmarks are found, just if any are found. To fix those
shortcomings, the use of the Mean Average Precision (MAP) is
proposed. The MAP is calculated as follows [24]:

Q| m;
1 1 o
MAP(Q) = il ; m; ;preczswn(Rji) 4)

with information needs q; € (@, relevant documents
{dl, ...dmj }, and Rj;, the minimal set of ranked retrieval re-
sults containing dj, [24]. Further, Precision/Recall plots are
used to present the performance of the similarity measure in
detail. For comparison with Baiker et al. [4] the F} score is
used [24].



4.2 Dataset

The NFI dataset published by Baiker et al [4] consists out of
300 toolmarks from 50 different tools. For each tool, tool-
marks for o« = 15°, 30°, 45°, 60°, and 75°are available. For
10 toolmarks additional 5 toolmarks each at o« = 45°are pro-
vided. However, since a balanced dataset is preferred, these
additional 45°toolmarks are ignore in the NIFT partitionings
described below. All toolmarks are available as 2D images, 3D
surfaces, or preprocessed 1D profiles extracted from the sur-
faces. For evaluating the baseline and TripNet the profiles and
the 2D images are used, respectively.

Since in contrast to the 1D profiles, the 2D images contain
a high variation of translation, scale, and rotation a rough man-
ual correction is performed as a preprocessing step. Further, to
increase the number of samples for training and testing Trip-
Net, horizontally flipped versions to the set of 2D images are
added. This artificially doubles the number of images to 400.
Since invariance to this operation is not desired these images
are assigned to a distinct set of an additional 50 tools. The
dataset is partitioned into training and testing as follows: All
toolmarks of a particular « (including their flipped counterparts
for TripNet) are put into the testset; all other toolmarks into the
trainingset. The naming of the partitioning is reflected by the
toolmarks in the testset, e.g. NFIT 15 contains all toolmarks
with a = 15° in the testset.

Furthermore, in order to allow a comparison with [4] the
KM 15 vs. KNM and KM 15/30 vs. KNM partitionings pre-
sented there are evaluated. These include all comparisons be-
tween all matching toolmarks with a difference in . of 15°, and
15°0r 30°with all non-matching distances of o = 45°, respec-
tively. The additional o« = 45° toolmarks are not included in
these sets.

To be complete, it should be added that for both the baseline
and TripNet the performance for « differences of 0°was evalu-
ated using the additional & = 45° toolmarks. However, since
perfect scores are achieved for this it will not be elaborated in
detail.

4.3 Baseline

In Table 2 our baseline is compared to the results published by
Baiker et al. [4]. In order to allow a one score comparison,
the False Discovery Rate (FDR) and Negative Predictive Value
(NPV) given by Baiker et al. were converted into F} scores.
For the KM 15 vs. KNM evaluation, the difference of 0.002 is
neglectable. However, for the dataset containing both 15°and
30°comparisons the performance difference increases to about
0.04. This suggests, that our baseline is not as well suited for
a = 30° as [4]. Still, the general trend that these methods
work well for « = 15° but decrease drastically for a« > 15
can be observed for both approaches. The performance decline
of this approach with increasing « difference is also shown in
Figure 5. For this experiment all comparisons were restricted
to the given « difference. In order to allow a comparison with
o differences of 0°the additional o = 45° toolmarks were in-
cluded; all images from the NFI toolmark database were used.
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Figure 5: Comparison of the soft-criteria scores achieved by
our baseline approach for « differences of 0°to 60°.

Metric  Baiker [4] Baseline TripNet

KM 15 vs. KNM F 0.96 0.96
KM 15/30 vs. KNM I 0.79 0.75

NFIT 15 MAP 0.47 0.78

NFIT 30 MAP 0.69 0.95

NFIT 45 MAP 0.70 0.94

NFIT 60 MAP 0.56 0.84

NFIT 75 MAP 0.35 0.54

Table 2: Evaluation results for our baseline and TripNet in
comparison with Baiker et al. [4].

This trend is continued for the NIFT datasets. In the NFIT
45 dataset, which similarly contains just comparisons with «
differences of 15°and 30°, a MAP of 0.70 is achieved. With
increasing « difference the MAP drops to 0.47 for NFIT 15
and even 0.35 for NFIT 75 which both contain « differences
of 15°to 60°. In Figure 6 the steep decline for a recall greater
than 0.3 suggests that after correctly identifying the samples
with similar « the approach fails to distinguish the remaining
toolmarks.

4.4 TripNet

Compared to the baseline it can be seen that the TripNet is bet-
ter suited to handle « differences greater than 15°. As shown
in Table 2 for NFIT 45 and NFIT 30 a MAP of over 0.9 is
achieved which suggests that most of the matching toolmarks
are ranked at the top. For NFIT 15 and NFIT 30 the MAP de-
clines slightly to 0.78 and 0.84. However, for NFIT 75 only an
MAP of 0.54 is achieved even though the distribution of « dif-
ferences is the same as for NFIT 15. This could be explained
with a degradation of the toolmarks for greater o which is also
suggested in [4]. The same can be observed when comparing
the result of NFIT 30 with NFIT 60. In Figure 7 these results
are shown in detail as Precision/Recall plots.

To investigate the impact of the embedding dimension the
Precision/Recall plots are compared in Figure 6. In case of a
dimension of 16 the network performs worse than the baseline.
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Figure 6: Precision/Recall plot for TripNet comparing different
embedding dimensions.
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Figure 7: Precision/Recall plot for TripNet comparing different
partitionings of the NFI Toolmark dataset.

The sharp drop at a recall of 0.05 suggest that not all toolmarks
with an « difference of 15°cannot be distinguished by the net-
work. However, the baseline approach is outperformed by all
networks with an embedding dimension of 32 or more. Increas-
ing the embedding dimension to more than 64 does not lead to
improved results.

4.5 Computational Effort

The evaluation of the baseline approach was conducted on an
Intel 17-5500U CPU using Matlab. On average a distance be-
tween two toolmark profiles is calculated in about 3s. Since,
NxN (90.000) computations are required it takes 25h to calcu-
late all distances for the whole NFI Toolmark dataset.

In contrast the embedding calculation for TripNet is done
in 0.01ms in case the toolmarks are already in memory; other-
wise, it takes 1ms. All experiments for TripNet were performed
using an NVIDIA Titan X (Maxwell architecture).

4.6 Limitations

It can be seen in Table 2 that the baseline approach is not
well suited for distinguishing toolmarks with an « difference
of more than 15°. The TripNet handles this situations better,
however for extreme cases like NFIT 75 the results are still un-
satisfactory. Furthermore, the performance of the network for
toolmarks of unseen tools, i.e. tools that are not in the train-
ingset, was not evaluated.

Additionally, for the current network and dataset the man-
ual translation, rotation and scale correction is essential since
the performance degrades significantly to a MAP of just 0.42
for NFIT 15. This drop in performance does not occur when the
preprocessed 1D profiles are used although this significantly
impairs the network since no random crops can be extracted
for training. Therefore, the ability of the network to adapt to
variations in the data is severely limited. In this case the MAP
drops from 0.78 to 0.67.

5 Conclusion

As shown a main challenge for matching striated toolmarks
is to handle differences in angle of attack. In this paper two
approaches, an elastic shape matching and a neural network
based TripNet, were proposed. Even though a perfect score is
achieved by our elastic shape matching baseline when compar-
ing toolmarks made with the same q, it is clearly is not suited
for differences of more than 15°; this could however be im-
proved by using a registration scheme similar to [4]. Further,
due to the high computational demands of about 3s per com-
parison this approach is restricted to small toolmark databases
in environments without time constraints.

Even though the NFI Toolmark dataset is fairly small the
performance achieved by TripNet is promising. As shown the
network is able to adapt to « differences of 15 °to 60°achieving
an MAP of 0.78 for the NFIT 15 partitioning. For « differ-
ences of 15°to 45°in the NFIT 30 partitioning a MAP of 0.95
is achieved. Still, especially for the most challenging NFIT 75
dataset, there is still room for improvement. However, prepro-
cessing is necessary as its robustness to translation, rotation and
scaling is limited. For future work this could be improved us-
ing bigger trainingsets or by augmenting the input samples to
introduce artificial variation. Additional work should also be
invested to enable matching of partial toolmarks; for instance,
a localized approach with a registration schema.
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