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Abstract—Unusual inactivity is caused by events, where elderly
need help (e.g., falls, illness). In order to detect unusual behavior,
modeling of activity results in inactivity profiles. State-of-the-
Art approaches focus on temporal aspects of inactivity by only
considering deviations of inactivity over time. This work proposes
the use of spatial information in combination with temporal
aspects to enhance the robustness and reduce the number of false
alarms. The proposed approach is evaluated on two different
datasets containing 100 days resp. 50 days of activity data of
elderly people and results are compared to the State-of-the-Art.
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I. INTRODUCTION

Due to the demographic change, Europe’s population is
growing older and thus automated systems to assist elderly
are needed. Ambient assisted living (AAL) solutions aim to
provide assistance and help for elderly, hence the detection of
critical events and unusual behavior is crucial. Furthermore,
getting help quickly after a fall reduces the risk of death by
over 80% [1] and thus AAL does not only assist elderly, but is
also able to save their lives. However, research mainly focus
on the detection of events (e.g., detection of falls [2], [3], [4],
[5SD. In order to detect events, two different approaches are
used: first, the specific event itself is detected directly (e.g.,
falls [2], [3], [6]) or second, events are detected indirectly on
a more abstract level by detecting abnormal inactivity (e.g.,
[71, [8], [9]). The latter approach offer the advantage to be
able to detect different critical events at the same time, but is
not able to distinguish the cause of inactivity (e.g., inactivity
due to fall, illness, vacation).

However, more attention is drawn to the detection of (short-
term) events than to the detection of (long-term) unusual
behavior. Behavior in the context of AAL can be modeled
using activity patterns and generating inactivity profiles to
detect abnormal long periods of inactivity ([7], [8]). Since
Cuddihy et al. [7] as well as Floeck & Litz [8] only focus
on temporal aspects of inactivity, the novelty of this paper
is the introduction of a spatio-temporal approach to model
inactivity depending on spatial information and to detect
unusual inactivity locally.

The rest of this work is structured as follows: Section 2
describes the State-of-the-Art methods to model and monitor
inactivity, whereas our region-based approach is introduced
in Section 3. Section 4 presents an evaluation and results of

the proposed algorithm and finally a conclusion is drawn in
Section 5.

II. STATE-OF-THE-ART

Monekosso and Remagnino [10] equipped a home-lab with
different sensors (e.g., motion detector, temperature sensor,
lighting status) and developed a model for behavioral trends.
This model is based on a hidden markov model. After a
training phase without any atypical behavior, the model is
tested in order to detect atypical behavior. However, detected
deviations from typical behavior not only result from the
person, but also from the sensor itself since noise disturbs
the sensor data.

Temporal aspects of activity patterns and trends are analyzed
by Virone and Sixsmith [11]. Again, the motivation is the
detection of deviations during the performance of activities
of daily living (ADL), where the following ADLs are de-
fined: sleeping, dressing, eating, bathroom, meal preparation,
hygiene, cleaning, phoning, washing, walking and sitting.
Deviations are detected on each activity separately by using an
unsupervised approach [12] in order to estimate the behavior
of the person and detect deviations from a normal behavior.
Evaluation is based on motion sensor data combined with
a stove-top temperature sensor and a bed-based vital sign
monitor, gathered by 22 residents in an assisted living setting
and software simulations. Spatial aspects are modeled by
the placement of one motion sensor per room, hence only
information about the occupancy in a room can be retrieved,
but not the exact location within the room.

Activity detection based on tracking information is intro-
duced by Nguyen et al. [13]. The environment is split into a
grid of different areas and landmarks are identified. Activity
detection is based on the visit of a person to specific landmarks
and thus considers spatial information in order to detect
the activity. As an example, the landmarks door, cupboard,
fridge and dining chair are visited during the behavior “short
meal”. A set of primitive behaviors (i.e., transitions between
landmarks) are defined and activities are recognized using a
hierarchical hidden markov model. This approach considers
spatial aspects, but temporal aspects (time of the day) are not
considered, hence only activities are detected but abnormal
behavior can not be detected.

The work of Nait-Charif & McKenna [9] uses tracking
information from an overhead camera to summarize activity
in home environments. The movement of the person is tracked



and the room is divided into entry/exit zones, inactivity zones
and transition areas. A typical use of the room is modeled
as entering the room via an entry zone, moving to one or
more inactivity zones and finally leaving the room via an
exit zone. Transition areas are defined to be areas where
the transition from an entry/exit zone to an inactivity zone
or between inactivity zones take place. Inactivity zones are
learned automatically using the approach introduced in [14].
The person’s speed is analyzed to define whether the person
is active or inactive. Depending on the position of the person
during the inactivity, the system detects whether the inactivity
occurs in an already pre-defined inactivity area or outside such
areas. This allows to detect unusual inactivity outside pre-
defined areas which can be caused by a fall. Furthermore,
activity patterns (i.e., sequence of visiting different zones) are
analyzed and deviations of patterns are detected. However, the
work of Nait-Charif & McKenna [9] focus on spatial aspects of
inactivity, but temporal aspects are not taken into consideration
since only the sequence of visiting zones is analyzed but not
associated with the time of the day (e.g., the sequence of
visiting different zones may change depending on the time).

In contrast, Cuddihy et al. [7] and Floeck & Litz [8] do not
focus on spatial but on temporal aspects of inactivity. Activity
data is collected using 30 sensors (i.e., motion detectors, door
and window sensors) resulting in activity data [8]. Due to the
diversity of sensors used, inactivity profiles are introduced to
combine the data from different sensors to one profile. An
inactivity profile is constructed by analyzing the duration of
inactivity over time, where inactivity is defined as no activity
from any sensor. As long as no activity is detected, the
duration of inactivity raises over time, shown in Figure 1.
If any kind of activity is detected, the inactivity duration
is set to zero (e.g., between 7 and 8 AM). In order to
detect unusual inactivity, the inactivity profile is compared
to a reference profile (i.e., average inactivity profile of one
month). Therefore, the profiles are divided into n different
time slots. Floeck & Litz [8] calculate the integral of inactivity
of each time slot and combine all n time slots to one feature
vector per day, being compared to the reference vector using
the Dice coefficient [15]. By introducing a tolerance value
and a convolution with a weighting vector, small temporal
and numerical deviations are compensated (e.g., sleeping five
minutes longer than usual). Since the inactivity profiles are
compared on a one-day basis, deviations are detected at the
end of the day. However, extensive evaluation of this approach
is missing and thus no results when being applied to real world
scenarios are provided.

Cuddihy et al. [7] use additional door sensors to detect if a
person left the flat in order to minimize false positives when
no person is present. Similar to [8], the authors use inactivity
profiles and each day is divided into n time slots. A reference
alert line is learned over the duration of 45 days by analyzing
the maximal inactivity duration of each time slot and adding
buffers to allow small deviations. The uniform and variable
buffer act as vertical tolerance and ensure, that the sensitivity
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Figure 1. Example of an inactivity profile

Figure 2.

Example of an alert line

of the algorithm is adopted according to the amount of inac-
tivity (i.e., the algorithm is more sensitive during active times
and less sensitive during inactive times). Furthermore, time
shifts are compensated by applying a weighting function to
the inactivity data and thus considering also adjacent intervals
providing a temporal buffer. Each time interval is compared to
the corresponding time interval of the alert line immediately,
hence alarms are raised at the end of each time interval if
the inactivity duration exceeds the threshold defined by the
alert line. An example of an trained alert line is shown in
Figure 2: the alert line is shown as bold red line, together with
the inactivity profiles of different days. All inactivity profiles
exceeding the threshold result in an alarm, since an unusual
amount of inactivity is detected.

The alert line is adopted based an a 45 day rolling window
approach, hence it is learned from the last 45 days and adopts
to behavioral changes automatically. The algorithm analyzes
temporal aspects of inactivity considering the time of the day,
but on a global level. Hence, all sensor data is aggregated and
taken into consideration, thus spatial information is lost.

III. METHODOLOGY

The proposed approach introduces the use of spatial in-
formation in combination with temporal aspects in order to
enhance the accuracy of inactivity detection and to reduce
the number of false positives. In contrast to the State-of-
the-Art, a depth sensor together with a tracking algorithm
provided by the OpenNI SDK is used to collect tracking data.
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Figure 3.

The use of a depth sensor is motivated by the potential to
combine the proposed approach together with other approaches
(e.g., fall detection systems [3], [4]) without the need for
additional sensors. In contrast to Cuddihy et al. [7], no door
sensors are used. Thus, no information about the absence of a
person due to vacation, shopping, etc. is available. Since these
times of absences are incorporated in the overall inactivity
model, longer periods of inactivity (i.e., higher amount of
inactivity) are calculated. Moreover, alarms are triggered after
a longer period of time since the trained inactivity model
already consists of high inactivity values due to the absence
of a person. However, the information from door sensors can
be integrated into the system easily, in order to improve the
accuracy.

The proposed workflow of our approach is illustrated in
Figure 3: in the first step, regions of interest (ROIl) R; are
detected by the algorithm. In the second step, alert lines are
calculated based on the approach of Cuddihy et al. [7], but for
each spatial region R; individually.

A. Region of Interest Detection

Tracking data is captured in world coordinates relative to
the sensor and is distorted. In order to obtain accurate results,
the tilt of the depth sensor is calculated and used to rectify the
motion data. Pixelwise accumulation of motion data indicates
ROIs and thus the pixels (and their surroundings) with the
highest count of motion data are defined as ROI. This is
achieved by using a grid-based approach, calculating a 75x75
histogram of the motion data. In order to retrieve interesting
regions of the scene, all bins with motion data higher than
60% of the maximal motion are pre-filtered as regions of
interest. This initial regions are refined by using a non-maxima
suppression, where similar region centers are eliminated. As a
result, the center of 7 regions I?; containing a high amount of
motion are obtained and are thus used as region of interests.
Figure 4 depicts the top view of the scene including the motion
data. Moreover, regions with a high amount of motion are
detecting by applying a threshold and are marked as circles.
After applying the non-maxima suppression, only relevant
ROIs are extracted, marked as X. These relevant regions are
then used in the second step in order to calculate regional alert
lines.

An example of the ROIs is shown in Figure 5: although it
seems that the two detected ROIs are close together, the 3D
representation in Figure 6 illustrates that different distances
are taken into account and thus, distinct ROIs are identified.

Using the proposed region based approach allows to focus
on specific regions being from high interest and eliminates a
high amount of motion data from other areas. This information
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Figure 4. Top view of motion data and detected regions of interest (dataset
1): circles represent the initially calculated ROIs by threshholding whereas
crosses mark the final ROI centers after using non-maxima suppression

Figure 5. Region of Interest (dataset 1): depth image (ground floor marked
yellow)
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Figure 6. Region of Interest (dataset 1): 3D visualization of the 75x75
histogram



about the interesting areas of a scene can be either used to
refine the modeling of inactivity and detect unusual inactivity,
or can be used to detect time depending actions. Regions with
high activity contain typical, regular actions (e.g., eating) since
those actions are performed at the same place (e.g., at a table).

An example is shown in Figure 6: one ROI with the highest
activity is located in the back right corner, where the window is
located. The second significant ROI is detected at the chair at
the right side of the table. Another possible, but not significant
and thus not detected ROI is located at the opposite of the
table where another chair is placed. All ROIs can be explained
and interpreted very easily: ROI 1 at the window indicates
regular ventilation of the flat, whereas ROI 2 at the table
reflects regular meal consumption. Since data is obtained from
a flat where an elderly couple live in, the possible ROI at the
opposite of the table indicate the area of the second person
during food consumption. This indicates that the proposed
approach is able - in combination with further knowledge of
the scene - to not only monitor activity in general, but to model
specific actions (e.g., food consumption) and the behavior of
different persons individually (i.e., it is assumed that person
A sits on the right side of the table whereas person B usually
sits on the left side of the table).

B. Alert Line Calculation

The inactivity profile (i.e., alert line) is calculated for each
region R; during the training phase, using the method of
Cuddihy et al. [7]. Only activity within this region and their
surrounding, defined by a maximum tolerance radius r (e.g.,
r =25cm), is taken into consideration. In comparison to the
approach introduced by Cuddihy et al. [7], regional alert
lines contains a higher amount of inactivity since motion
information is only analyzed in a small area of the scene,
defined by the ROIL

After the training of the alert line, activity is analyzed
in each region R; individually and compared with the cor-
responding alert line A;. The comparison is done per time
interval and an alarm is triggered if the duration of inactivity
is above the threshold of the alert line for this interval. Hence,
unusual inactivity (i.e., deviation from the trained inactivity
profile) is detected already at the end of the time interval
allowing to provide immediate alarms. Unusual inactivity is
defined as reduced movement at time intervals, where usually
a high amount of movement is present (calculated during the
training phase). This unusual inactivity can be caused due to
illness or other physical impairments (not being present during
the training phase) or the absence of the person.

IV. RESULTS

The evaluation is performed on two different datasets con-
taining motion data obtained by a Asus Xtion in combination
with the tracker provided by OpenNI. Depth data is available
up to ten meters and thus the use of the Asus is feasible for
most rooms in practice. For the analysis, an elderly couple
was monitored over the duration of more than 100 days and
motion data was captured (dataset 1). For dataset 2, activity
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Figure 8. Top view of motion data and detected ROIs (dataset 2): circles
represent the initially calculated ROIs by threshholding, crosses mark the final
ROI centers after using non-maxima suppression

data of an elderly man was recorded over the duration of more
than 50 days. Days without activity are removed in a first
step in order to remove outliers, resulting in a dataset of 100
resp. 50 days. The depth image of the scene in dataset 1 is
visualized in Figure 5. Figure 7 illustrates the depth image of
the scene of dataset 2. The only region of interest is detected
at a table, indicate a high amount of motion close to the table
(i.e., sitting down and getting up). Candidate regions of interest
are illustrated in Figure 8, where only one region of interest
was detected to be significant.

Two regions of interest are detected in dataset 1 and the
alert lines obtained by training over a duration of 46 days are
shown in Figure 9: (a) shows the global alert line, whereas
(b)-(c) show the alert lines to their corresponding regions 1
and 2. Since all alert lines use the same scale (but different
offsets), the alert line in region 1 shown in (b) is similar to the
global alert line shown in (a), but provides a more distinctive
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Figure 10. Comparison of global and regional false alarm rate depending on
the duration of the training (dataset 1)

change of inactivity, i.e., the difference from the maximal to
the minimal value is larger. Furthermore, the alert line from
region 2, depicted in (c) resp., indicate activity between 9 and
11 AM. This information is completely lost in the global alert
line and thus illustrates an advantage of the proposed region
based approach, where each region is analyzed individually
and thus spatial information is preserved.

Since the global alert line is formed due to the high activity
in region 1, further evaluation is performed to compare the
performance of the global alert approach with the proposed
region based approach in region 1. Evaluation is performed by
calculating the number of alarms in region 1 and on a global
level using cross validation. For dataset 1, nine rounds of cross
validation were performed, for dataset 2 three rounds. For each
round of cross-validation, the dataset is split into a training and
test data set randomly and the number of training data is varied
from two days of training up to a training of 98 days. The rest
of the data set is used as test set, hence resulting in a number
of 98 test cases resp. a test set of two days. The results of
all rounds are averaged and shown in Figure 10 (dataset 1)
and Figure 11 (dataset 2). Multiple rounds of cross-validation
are performed in order to avoid overfitting of data since the
training data is randomly chosen multiple times.

Figure 10 compares the proposed region based approach
with the global approach introduced in [7] based on dataset
1: our approach clearly outperforms the global approach since
the number of false alarms is always lower. Please note that
during the recording of the activity data no unusual event
was reported by the elderly couple, hence the number of
false alarms should be zero. Thus, the number of false alarms
indicates the performance of the algorithms.

To verify the results, the region based and global algorithm
are evaluated on a smaller dataset containing 50 days of
activity data of an elderly man. The results, depicted in Fig-
ure 11, again shows that the proposed algorithm outperforms
the global approach introduced by Cuddihy et al. [7], when
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Figure 11. Comparison of global and regional false alarm rate depending on
the duration of the training (dataset 2)

using more than 20 training days. The false alarm rate drops
to zero when using more than 25 days of training due to the
small dataset available and possible overfitting (half of the data
set is used for training).

V. CONCLUSION

Detecting unusual inactivity in comparison to a reference
profile provides information about events where elderly need
help. The proposed approach introduces the use of spatial
information to enhance the accuracy of temporal inactivity
monitoring. An evaluation on two datasets of elderly people
showed that due to the combination of temporal and spatial
information, the proposed algorithm reduces the number of
false alarms. Future work will enhance the detection of regions
of interest, since the correct detection of regions of interest is
crucial. Moreover, semantically interesting regions of interest
can be retrieved by this approach and combination with tem-
poral aspects can be used to obtain information about different
activities, depending on the time of execution. Finally, more
extensive evaluation on additional datasets will be performed.
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