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Abstract

In order to create a complete three-dimensional model
of an object based on its two-dimensional images, the im-
ages have to be acquired from different views. An increasing
number of views generally improves the accuracy of the fi-
nal 3D model but it also increases the time needed to build
the model. The number of the possible views can theoreti-
cally be infinite. Therefore, it makes sense to try to reduce
the number of views to a minimum while preserving a cer-
tain accuracy of the model, especially in applications for
which the performance is an important issue. This paper
shows an approach to Next View Planning for a fusion of
Shape from Silhouette, as an example of a passive 3D re-
construction technique, and Shape from Structured Light,
as an example of an active 3D reconstruction technique in
order to get 3D shape reconstruction with minimal different
views. Results of the algorithm developed are presented for
both synthetic and real input images.

1 Introduction

One possibility for obtaining multiple views is to choose
a fixed subset of possible views, usually with a constant step
between two neighboring views, independent of the shape
and the complexity of the object observed. This is illus-
trated in Figures 1a and 1b, which show a reconstruction
of a corner of a square by drawing lines from the point
O with a constant angle between two lines and connecting
the points where the lines intersect the square. We can see
that the corner reconstructed using 9 lines (Figure 1b) looks
”better” than the one reconstructed using 5 lines (Figure 1a),
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but also that neither of these two methods was able to recon-
struct the corner perfectly. In addition to this, some of the
views (20◦ in Figure 1a and 10◦, 20◦, 30◦, 60◦ and 70◦ in
Figure 1b) could have been omitted — without them the re-
construction of the corner in Figures 1a and 1b would have
been exactly the same.
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Figure 1. Reconstruction of a square corner

This simple example illustrates the need for selection of
views based on the features of the object, called Next View
Planning (NVP). If we had a way of selecting only the sig-
nificant views for the square from Figure 1, we could re-
construct the corner of the square perfectly using 3 views
only, as shown in Figure 1c. A thorough survey of Next
View Planning, also called Sensor Planning, is given in
[20]. Tarabanis et al. [20], summarize the NVP problem
as follows: ”Given the information about the environment
(e.g., the object under observation, the available sensors) as
well as the information about the task that the vision system
is to accomplish (i.e., detection of certain object features,
object recognition, scene reconstruction, object manipula-
tion), develop strategies to automatically determine sensor
parameter values that achieve this task with a certain de-
gree of satisfaction”. Following this definition, in order to
design an NVP algorithm for a given computer vision task,
one has to identify the sensor parameters which can be ma-
nipulated (e.g., the position of the camera) and define the
”degree of satisfaction”, i.e., construct a metric for the eval-
uation of the parameter values proposed. The number of
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parameters that can be manipulated is also called the num-
ber of degrees-of-freedom. Increasing number of degrees of
freedom increases the complexity of an NVP algorithm.

There are several computer vision tasks which can incor-
porate an NVP problem, differing in the necessary amount
of an a priori knowledge about the object, the sensors and
the environment. Maver and Bajcsy [13] proposed an NVP
algorithm for an acquisition system consisting of a light
stripe range scanner and a turntable. They represent the
unseen portions of the viewing volume as 2 1

2D polygons.
The polygon boundaries are used to determine the visibil-
ity of unseen portions from all candidate next views. The
view which can see the largest area unseen up to that point
is selected as the next best view.

Connolly [6] uses an octree to represent the viewing vol-
ume. An octree node close to the scanned surface was la-
beled as seen, a node between the sensor and this surface as
empty and the remaining nodes as unseen. Next best view
was chosen from a sphere surrounding the object. Con-
nolly proposed two NVP algorithms: one called planetar-
ium, which used a form of ray tracing to determine the num-
ber of unseen nodes from each candidate view and selected
the one seeing the most unseen nodes, and a normal algo-
rithm, which selected the next best view from 8 candidate
positions only and did not take occlusions into account, and
therefore was significantly faster.

Whaite and Ferrie [22] use the range data sensed so far
to build a parametric approximate model of the object. The
view from which the data fits the current model the worst is
chosen as the next best view. This approach does not check
for occlusions and does not work well with complex objects
because of limitations of a parametric model.

Pito [15] uses a range scanner, which moves on a cylin-
drical path around the object. He partitions the viewing
volume into its seen and unseen portions, and defines the
surface separating the two volume portions as void surface.
This surface is approximated by a series of small rectan-
gular oriented void patches. In his positional space (PS)
algorithm, the next best view is chosen as the position of
the scanner which samples as many void patches as possi-
ble, while resampling at least a certain amount of the current
model.

Similar to [15] Reed and Allen [17] propose a range
scanner and a turntable system that uses an incremental
modeler and a sensor planer that work in an interleaved
fashion. A ”rough” model is acquired first, the occlusion
boundary defines the unseen surface, which serves as the
criterion for the next best view. The planning task tries to
maximize the surface area of the occlusion boundary that is
imaged in each sensing operation.

Our idea was to implement a simple and straight-forward
NVP algorithm, which can perform locally so that the
turntable movements are minimal and works with both data

sources, active and passive triangulation data. Furthermore,
the method should at least preserve the accuracy of mod-
els built using all possible views while reducing the number
of views significantly. In most of the object reconstruction
tasks, which involve some kind of Next View Planning, the
NVP algorithm is part of the model building process and it
is guided by some features of the partial model built based
on preceding views. As in [17] in our 3D modeling ap-
proach the acquisition of multiple views of an object and the
actual object reconstruction are separated tasks, since we
have two different models to be combined into one and two
different viewpoints (active and passive system). Therefore,
our goal was to design an NVP algorithm, which does not
need the partial model but uses only the features of the im-
ages acquired and is simple and fast.

The acquisition system consists of a turntable with a di-
ameter of 50 cm, whose desired position can be specified
with an accuracy of 0.05◦ (Figure 2a); two monochrome
CCD-cameras (Camera-1 in Figure 2 is used for acquiring
the images of the object’s silhouettes and Camera-2 in Fig-
ure 2 for the acquisition of the images of the laser light pro-
jected onto the object); a backlighting system (Figure 2e)
used to illuminate the scene for the acquisition of the silhou-
ette of the object; and one prism equipped laser (Figure 2d)
used to project a light plane onto the object. The cameras
and the laser are fixed while the turntable can rotate around
its rotational axis. That means, our system has one degree
of freedom.

(c) Camera−2

(a) Turntable(b) Camera−1

(d) Laser (e) Lamp

Figure 2. Acquisition System

Having the constraint of using image features only, we
propose a simple approach, which takes only the current and
the preceding image to decide what the next rotational step
of the turntable will be. It defines normalized metrics for
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comparison of the current and the preceding image. If the
change is less than or equal to the maximal allowed change
then the step is doubled. If the change is higher than the
maximal change, then the current image is discarded and
the turntable moves back by half the current step. In spe-
cial cases where doubling the step exceeds the maximum or
halving the step falls below the minimum, the new step is
set to the maximum or minimum, respectively.

Our approach is based on the work of Liska [11], who
uses a system consisting of two lasers projecting a plane
onto the viewing volume and a turntable. The next best
view (the next position of the turntable) is computed based
on information from the current and the preceding scan. In
each of the two scans the surface point farthest from the
turntable’s rotational axis is detected as well as the corre-
sponding point in the other scan. The pair of points with
the greater change in the distance from the rotational axis is
used to determine whether the current turntable step should
be enlarged or minimized.

This paper is organized as follows: Section 2 describes
the basic Shape from Silhouette and Shape from Structured
Light method used to perform the 3D model reconstruction
and Section 3 presents the Next View Planning method de-
veloped for both reconstruction methods. Experimental re-
sults with both synthetic and real data are given in Section
4. At the end of the paper conclusions are drawn and future
work is outlined.

2 Acquisition Techniques

Shape from Silhouette is a method of automatic con-
struction of a 3D model of an object based on a sequence
of images of the object taken from multiple views, where
the object’s silhouette represents the only interesting fea-
ture of an image [19, 16]. The object’s silhouette in each
view (Figure 3a) corresponds to a conic volume in 3D space
(Figure 3b). A 3D model of an object (Figure 3c) can be
obtained by intersecting the conic volumes, which is also
called Space Carving [10]. Multiple views of the object can
be obtained either by moving the camera around the object
or by moving the object inside the camera’s field of view.
In our approach the object rotates on a turntable in front
of a stationary camera. Shape from Silhouette can be ap-
plied on objects of arbitrary shapes, including objects with
certain concavities (like a handle of a cup), as long as the
concavities are visible from at least one input view.

There has been much work on the construction of 3D
models of objects from multiple views [1, 12, 5, 16].
Szeliski [19] first creates a low resolution octree model
quickly and then refines this model iteratively, by intersect-
ing each new silhouette with the already existing model.
Niem [14] uses pillar-like volume elements instead of an
octree for the model representation. Wong and Cipolla [23]

use uncalibrated silhouette images and recover the camera
positions and orientations from circular motions. In re-
cent years there have been also Shape from Silhouette ap-
proaches based on video sequences [7, 3]. The work of
Szeliski [19] was used as a base for the Shape from Sil-
houette part of the method (for details see [21]).

(a) (b) (c)

Figure 3. Image silhouettes (a), a conic vol-
ume (b) and the final model (c)

Shape from Structured Light is a method which con-
structs a surface model of an object based on projecting a
sequence of well defined light patterns onto the object. The
patterns can be in the form of coded light stripes [9] or a
ray or plane of laser light [11]. For every pattern an image
of the scene is taken. This image, together with the knowl-
edge about the pattern and its position relative to the camera
are used to calculate the coordinates of points belonging to
the surface of the object. This process is also called active
triangulation [2, 8].

(a) (b) (c)

Figure 4. Projection of laser plane (a), cloud
of points (b) and reconstructed surface (c)

The Shape from Structured Light method used in our ap-
proach is based on the projection of laser planes onto the
object (Figure 4a). 3D points obtained through active trian-
gulation using all views represent a cloud of points belong-
ing to the object’s surface (Figure 4b). This cloud of points
can be used to create a smooth surface representation (Fig-
ure 4c). A strength of Shape from Structured Light is that it
can reconstruct any kind of concavities on the surface of the
object (see the top of the amphora in Figures 4b and 4c), as
long as the projected light reaches these concavities and the
camera detects it. However, this method often suffers from
camera and light occlusions [11], resulting in incomplete
surface models.
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The combination of the Shape from Silhouette method
with the Shape from Structured Light method was per-
formed in order to provide volumetric data of objects with
concavities and to eliminate the drawbacks of each of the
methods since they complement one another (see [18] for
details). The main problem to be addressed in an attempt
to combine these two methods is how to adapt the two
representations to one another, i.e. how to build a com-
mon 3D model representation. One possibility would be to
build a separate Shape from Structured Light surface model
and a Shape from Silhouette volumetric model followed by
converting one model to the other and intersecting them.
But if we want to estimate the volume of an object us-
ing our model, any intermediate surface models should be
avoided, because of the problems of conversion to a volu-
metric model. Therefore, our approach proposes building
a single volumetric model up from the ground, using both
underlying methods (for details see [18]). For the volumet-
ric model we use an octree [4], which is a tree-formed data
structure used to represent 3D objects. Each node of an
octree represents a cube subset of a 3D volume. The oc-
tree contains binary information in the leaf nodes and is
therefore suitable for representation of 3D objects, where
the shape of the object is the only object property that needs
to be modeled by the octree. The octree representation has
several advantages [4]: for a typical solid object it is an
efficient representation, because of a large degree of coher-
ence between neighboring volume elements (voxels), which
means that a large piece of an object can be represented
by a single octree node. Another advantage is the ease
of performing geometrical transformations on a node, be-
cause they only need to be performed on the node’s vertices.
The disadvantage of octree models is that they digitize the
space by representing it through cubes, whose resolution
depends on the maximal octree depth and therefore cannot
have smooth surfaces. Since both acquisition methods use
the same modeling scheme, our NVP method can be applied
to both techniques independently at the same time.

3 Next View Planning Approach

The only information provided by a pixel in a silhouette
image is whether the pixel represents the object or the back-
ground. Following the notation common in NVP, we define
a pixel representing the object as seen and a pixel represent-
ing the background as empty. Note that in a silhouette image
there are no occlusions — the value of a pixel depends only
on whether, in the conic volume defined by the pixel, there
is a 3D point belonging to the object. Therefore, there can
not be any unseen pixels, i.e., pixels for which we can not
be sure whether they should be marked as seen or empty.
In a binarized silhouette image all white pixels are seen and
all black pixels empty. Therefore, our NVP algorithm bi-

narizes an acquired image and compares two binary images
in the following way: it counts all pixels which are seen in
one and empty in the other image; in order to normalize this
value, it is divided by the number of pixels which are seen
in at least one of the images. This condition holds, if the
angle between two views is not too large, since it is a local
property.

With this metric definition, if two silhouette images are
identical, the change is 0, and if the silhouettes do not inter-
sect at all, it is 1. Note that calculating the change uses fea-
tures of the images only and none of the information about
the geometry of the acquisition system. This means that the
system does not need to be calibrated prior to applying the
NVP algorithm. Our NVP approach performs these steps:

1. Parameters are initialized. The user sets the initial step
αinit and the maximal step αmax (αinit ≤ αmax), as
well as the maximal allowed change Cmax between
two subsequent images. This change is assumed to be
normalized, i.e., 0 ≤ Cmax ≤ 1. The minimal step
αmin is implied by the resolution of the turntable (1◦

for our turntable).

2. The first image I1 is taken. The current step αcurr is
set to the initial value: αcurr = αinit. Number of
acquired views n is set to one: n = 1.

3. If the turntable already has made a complete revolution
of 360◦, we are done. Otherwise, the turntable is ro-
tated by the angle αcurr, the image In+1 is taken and
we continue with Step 4.

4. The change Ccurr between the images In+1 and In is
evaluated. If Ccurr ≤ Cmax or αcurr = αmin the
image In+1 is accepted, jump to Step 6. Otherwise the
image In+1 is discarded, continue with Step 5.

5. The step αcurr is halved: αcurr = 1
2 · αcurr. If αcurr

becomes smaller than αmin it is set to αmin. The
turntable is rotated by −αcurr (i.e., back by the half
of the previous step). Go back to Step 4.

6. Increment the image counter n by one and double the
step αcurr: n = n + 1, αcurr = 2 · αcurr. Jump back
to Step 3.

For Shape from Structured Light images we follow the
same idea — we mark the pixels of the current and the
preceding image as seen, empty or unseen, and count pix-
els, which are seen in one and empty in the other im-
age. A Shape from Structured Light input image con-
tains a curve representing the intersection of the laser
plane and the object. How do we decide which pixels are
seen/empty/unseen? If we denote the source point of the
laser with P , the image pixels produced by the laser line
with Rx and all possible object points Qi (Figure 5), and
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draw a line from P going through Rx, we can differentiate
between three types of points:

Figure 5. Seen, empty and unseen pixels in
laser images

If the line intersects the laser curve before it reaches Rx

(or exactly at Rx), then Qi is below the surface of the ob-
ject and we mark it as seen (point Q1 in Figure 5); if the
line intersects the laser curve after the point Rx, then Qi

is above the object’s surface and we mark it as empty (Q2

in Figure 5); finally, if the line does not intersect the laser
curve at all, then Qi is occluded by a part of the object out-
side the current laser plane and we can not say whether it
is above or below the surface, so we mark it as unseen (Q3

in Figure 5). Our NVP algorithm compares two consecutive
images by counting pixels, which are seen in one and empty
in the other image. This number is normalized by dividing it
by the number of pixels which are seen in at least one of the
two images, but not unseen in the other. In other words, be-
cause of uncertainty associated with the unseen pixels, they
are completely disregarded by our NVP algorithm.

4 Results

Experiments were performed with both synthetic and
real objects. For synthetic objects we built a model of a
virtual camera and laser and created input images such that
the images fit perfectly into the camera model. As syn-
thetic object, we created a virtual cuboid with dimensions
100 × 70 × 60 mm. For tests with real objects we used 6
objects: a metal cuboid, a wooden cone, a globe, a coffee
cup, and two archaeological vessels. The real volume of the
first 3 objects can be computed analytically, for the other
objects we can only compare the bounding cuboid of the
model and the object.

The user definable parameters for NVP are the maximal
and the initial step between two neighboring views, as well
as the maximal allowed difference between them. The pa-
rameter with the greatest impact on the number of the views

b)

a)

c)

d)

e)

f)

g)

NVP−based Equiangular

Figure 6. Comparison of models built using
NVP-based and equiangular views

selected is the difference between two images. For all ob-
jects presented the range is from 2–15%. It was low for
highly symmetrical objects (the cuboids and the cone) and
high when the object was not placed in the center of the
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turntable. For all objects the maximal step was set to 16◦

and the initial to 4◦.
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Figure 7. Analysis of selected views for
cuboids, cone and cup

In order to evaluate the NVP-based models, we compare
them with models built with a fixed number (60) of equian-
gular views and with models built using all 360 possible
views. For the laser method we took also different number
of equiangular views since for some objects fewer views
(like the cone) or more views (like vessel 2 which is highly
structured) are necessary to obtain comparable results. We
expect to see that the volume of NVP-based models is closer
to the volume of models built using all views than the mod-
els built with equiangular views. Figure 6 shows the models
built. and Table 1 summarizes the results.

The results in Table 1 indicate that there is no significant
difference between the volume computed using NVP-based
and equiangular views for any of the objects. This can be
expected for objects with asymmetric, highly detailed sur-
faces, such as the vessels or completely rotationally sym-
metric objects, such as the cone or the globe. For simply
shaped, but asymmetrical objects, such as the cuboids and
the cup, a certain increase in the accuracy of the models
built using NVP could be expected. Certainly, for highly
structured objects like vessel 2, the method produced even
more views than in the equiangular case to produce an ideal
number of scans. This can be expected since the simple
NVP method scans almost all highly structured parts at the
lowest step width.

In order to additionally examine our NVP algorithm, in
Figure 7 we illustrate the views selected for the synthetic
and real cuboid, the cone and the cup. All figures show the
objects from the top view, facing the x-y plane of the world
coordinate system.

For Shape from Silhouette views (Figures 7a, 7c, 7e
and 7g) each dashed line indicates the camera viewing di-
rection, i.e., it represents the camera’s optical axis. High
density scanning areas should be those for which the silhou-
ette border moves fast, e.g., when the width of the silhouette
changes rapidly. This happens when an object’s part which
is far from the rotational axis starts or ends being visible
from the camera. For the cuboids (Figures 7a and 7c) such
parts are its corners, for the cone (Figure 7e) there are no
such parts and for the cup (Figure 7g) it is its handle.

P1P2 P1

Object

Q

Q2

1

O

View 2

View 1

Figure 8. Difference between two silhouette
views

For the purpose of better understanding of the selected
Shape from Silhouette views in Figure 7, Figure 8 illustrates
the difference between two views, where each dashed line
represents the optical axis of the camera. If we define O
from Figure 8 as the point representing the rotational axis
of the turntable, then we can view the lines P1Q1 and P2Q2

as the width of the silhouette in views 1 and 2, respectively.
The parts of an object for which this width changes signifi-
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object view selection #silh.views #las.views dimensions (mm) volume (mm3) error
synthetic all 360 360 100.0 × 70.0 × 60.0 420 000 —
cuboid NVP-based 54 71 103.5 × 74.0 × 60.0 436 666 +3.97%

(Fig. 6a) equiangular 60 90 104.0 × 73.0 × 60.0 434 248 +3.39%
real all 360 360 101.0 × 71.0 × 60.0 384 678 —

cuboid NVP-based 54 79 101.6 × 72.3 × 60.0 397 937 +3.45%
(Fig. 6b) equiangular 60 90 101.6 × 71.9 × 59.5 397 684 +3.38%

all 360 360 150.1 × 149.4 × 77.5 435 180 —
cone NVP-based 24 25 151.6 × 151.6 × 76.5 462 155 +6.20%

(Fig. 6c) equiangular 60 60 151.6 × 152.2 × 76.5 462 207 +6.21%
all 360 360 149.1 × 148.2 × 144.6 1 717 624 —

globe NVP-based 24 25 150.0 × 149.1 × 144.6 1 733 613 +0.93%
(Fig. 6d) equiangular 60 60 150.0 × 150.0 × 144.6 1 732 919 +0.89%

vessel all 360 360 139.2 × 83.2 × 92.8 341 733 —
#1 NVP-based 52 45 139.2 × 84.0 × 92.8 348 699 +2.04%

(Fig. 6e) equiangular 60 60 139.2 × 83.2 × 92.8 346 611 +1.43%
vessel all 360 360 112.9 × 111.8 × 86.4 340 739 —

#2 NVP-based 55 148 113.4 × 112.8 × 86.3 349 918 +2.69%
(Fig. 6f) equiangular 60 120 113.4 × 112.3 × 86.3 348 978 +2.42%

all 360 360 111.6 × 79.0 × 104.3 408 344 —
cup NVP-based 36 34 112.2 × 80.4 × 104.3 417 360 +2.21%

(Fig. 6g) equiangular 60 60 112.2 × 79.7 × 104.3 416 726 +2.05%

Table 1. Comparison of silhouette models built using all views, NVP-based views and equiangular
views

cantly from one view to the next need to be scanned with a
higher density.

Shape from Structured Light views (Figures 7b, 7d, 7f
and 7h) are easier to understand. A dashed line in these
figures represents the laser plane projected onto the object
for that view. High density scanning areas should be those
where the distance between the rotational axis and the in-
tersection point of the laser plane and the object surface
changes rapidly. For the cuboids (Figures 7b and 7d) such
areas are the ones around the cuboids’ corners, for the cone
(Figure 7f) these areas do not exist, and for the cup (Fig-
ure 7h) they lie around the cup handle.

Let us analyze each of the objects from Figure 7. For
the silhouette views of the cuboids (Figures 7a and 7c) the
views with the highest density are 0◦–60◦ and 180◦–240◦.
That makes sense, because the width of the cuboid silhou-
ettes as defined in Figure 8 is smallest for views from 30◦

and 210◦ and largest from approximately 75◦, 165◦, 255◦

and 345◦. For views close to 30◦ and 210◦ the silhouette
width is determined by the two corners close to the camera
(see View 2 in Figure 8). Because of being close to the cam-
era these corners move almost orthogonally as the turntable
moves, so the silhouette width changes rapidly here and the
scans are most dense in these areas. The laser views of the
cuboids (Figure 7b and 7d) are more dense close to the cor-
ners, as expected, but it can also be seen that for both syn-
thetic and the real cuboid several corners were missed, be-
cause the step was too large, but the NVP algorithm did not
see it — for example, the next left and next right view of the

lower right corner intersect the cuboid surface at almost the
same distance from the rotational center.

For both silhouette and laser views of the cone (Fig-
ures 7e and 7f) all views look nearly the same, so the step
between two views was constantly equal to the maximal al-
lowed step. The step was smaller only for views close to 0◦,
solely because of the starting angle being smaller than the
maximal angle.

For the silhouette views of the cup (Figure 7g) high den-
sity view were taken from angles close to 165◦ and 255◦.
This is expected, because for those views the cup handle
starts/ends being visible (i.e., not occluded by the body of
the cup). The laser views (Figure 7h) are dense only in ar-
eas where the projected laser plane ”jumps” from the body
of the cup to its handle and back, just as expected.

5 Conclusion and Outlook

Obviously, our NVP algorithm did not fail in choosing
the ”right” views (except for the laser views of corners of
the cuboids), and did not bring any significant differences in
the results (measured in terms of the volume and the size of
the objects) compared to the models built using an equiva-
lent number of equiangular views. Therefore, the number of
significant views was dramatically decreased while preserv-
ing the geometry of the object for not structured objects. For
highly structured objects the method produces more views,
since the structure of the surface should be reconstructed
best. Measuring the volume only is not the best similarity
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measure too, since this does not necessarily describe correct
geometry. For example, the NVP-based model of the cup in
Figure 6 contains the complete handle, whereas the model
built using equiangular views misses some parts close to
the top of the handle. In conclusion we have shown that the
NVP algorithm for Shape from Silhouette and Shape from
Structured Light is able to decrease the number of views
to be computed (and thus save acquisition and computing
time) for non highly structured objects or objects that are
highly structured only at specific regions (like a cup with
handle). As a consequence we want to test our NVP al-
gorithm with complex, asymmetric synthetic objects and
would like to extend the method to two degrees of freedom.
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